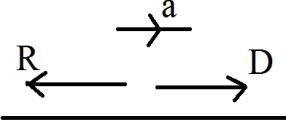
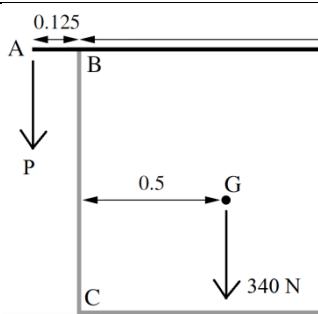
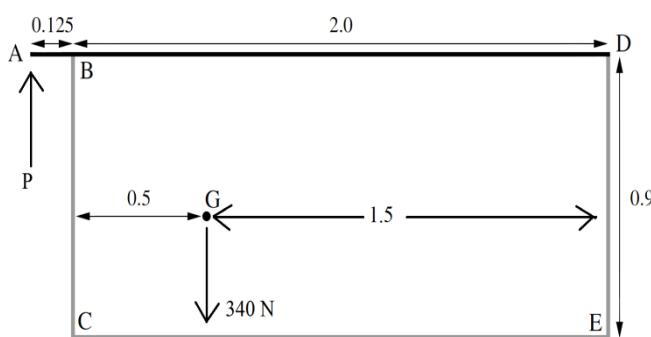


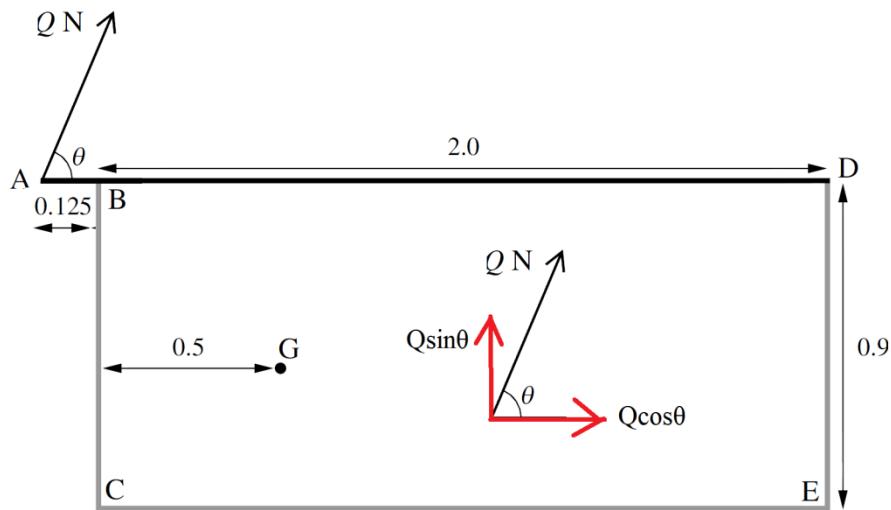
Solutions to January 2010

1(a)	<p>before</p> <p>P 6 kg</p>	<p>after</p> <p>Q 4 kg R 2 kg</p>
i.	$m_1 = 4$ $u_1 = 1$ $m_2 = 2$ $v_1 = ?$ $v_2 = 4$	<p>This is the reverse of two particles coalescing.</p> <p>Using Conservation of momentum</p> $m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$ $6(1) = 4v_Q + 2(4)$ $\therefore 4v_Q = -2$ $\therefore v_Q = -0.5$ <p>Direction is opposite to P's original motion</p>
ii.	<p>R 2 kg S 3 kg</p> <p>0.4 m</p>	<p>Coefficient of restitution $e=0.1$</p> $e = \frac{v_2 - v_1}{u_1 - u_2} = \frac{v_S - v_R}{u_R - u_S}$ $\therefore 0.1(u_R - u_S) = v_S - v_R$ $\therefore 0.1(4 - -1) = v_S - v_R$ $\therefore v_S - v_R = 0.5$ <p>Using Conservation of momentum</p> $m_R u_R + m_S u_S = m_R v_R + m_S v_S$ $2(4) + 3(-1) = 2v_R + 3v_S$ $\therefore 2v_R + 3v_S = 5$ <p>Solving both equations</p> $v_R = 0.7$ $v_S = 1.2$
		<p>To find the distance horizontally between particles when they land, split the calculations into SUVAT in H and V. Note that for V, $a=9.8$ and for H, $a=0$. Since both particles only have initial velocity in H, they land at the same t for V.</p> <p>R 0.7 m s^{-1} S 1.2 m s^{-1}</p> <p>0 m s^{-1} 0 m s^{-1}</p>




Solutions to January 2010

iii.	<p>Vertically for R & S</p> $s = 0.4$ $u = 0$ $v = ?$ $a = 9.8$ $s = ut + 0.5at^2$ $0.4 = 0 + 4.9t^2$ $\therefore t = \frac{2}{7}$	<p>Horizontally for R</p> $s = ?$ $u = 0.7$ $a = 0$ $s = ut + 0.5at^2$ $s = 0.7 \times \frac{2}{7} + 0$ $\therefore s = 0.2$	<p>Horizontally for S</p> $s = ?$ $u = 1.2$ $a = 0$ $s = ut + 0.5at^2$ $s = 1.2 \times \frac{2}{7} + 0$ $\therefore s = \frac{12}{35}$
	<p>Distance apart $= \frac{12}{35} - 0.2 = \frac{1}{7} = 0.143$ metres</p>		
(b)	<p>Before</p> <p>After</p> <p>Before impact, velocities are u and v After impact let velocities be u_1 and v_1 Coefficient of restitution is e Velocity perpendicular to plane is affected by coefficient of restitution, but velocity parallel to plane remains unchanged</p>	$e = \frac{v_1}{v} \Rightarrow v_1 = ev$ $u_1 = u$ <p>Before impact</p> $k.e. = \frac{1}{2}mu^2 + \frac{1}{2}mv^2$ <p>After impact</p> $k.e. = \frac{1}{2}mu_1^2 + \frac{1}{2}mv_1^2$ $k.e. = \frac{1}{2}mu^2 + \frac{1}{2}m(ev)^2$ <p>Loss in mechanical energy $= ke \text{ (before impact)} - ke \text{ (after impact)}$</p> $= \frac{1}{2}m(u^2 + v^2) - \frac{1}{2}m(u^2 + (ev)^2)$ $= \frac{1}{2}m(v^2 - e^2v^2)$ $= \frac{1}{2}mv^2(1 - e^2)$	

Solutions to January 2010


2i.	<p>Work done = Fd</p> <p>Work done against gravity i.e. gravitational potential energy = mgh</p> <p>Power = $Fv = F \frac{d}{t} = \frac{Fd}{t} = \frac{\text{work done}}{\text{time}}$</p>	
	$m = 1200$ $h = 60$ $wdR = 1.8 \times 10^6$ $u = v$ $t = 120$	<p>Total work done overcomes gravity and resistances</p> $= 1200 \times 9.8 \times 60 + 1800000$ $= 2505600$ $\therefore P = \frac{2505600}{120} = 20880$ <p>Power = 20.9 KW</p>
	<p>You could do this using conservation of energy</p> $wd \text{ by driving force} - mgh - wd \text{ by resistances} = \text{change in k.e.}$ $Dx - mgh - 1800000 = \frac{1}{2}m(v^2 - u^2)$ $\therefore Dx = 600 \times 0 + mgh + 1800000$ $\therefore P = \frac{Dx}{120} = \frac{2505600}{120} = 20880$	
ii.	$v = 18$ $P = 13500$	<p>There is no acceleration when at steady speed so the driving force D equals the resistive forces R</p> $P = Fv$ $\therefore F = \frac{13500}{18} = 750$ <p>Where F is the overall forward (i.e. in this case driving) force.</p> <p>So the resistive force is also 750N.</p> <p>Over 200 metres, the work done against resistance = $Fd = 750 \times 200 = 150000$ Joules</p>
iii.	$u = 18, v = 9$ $P = 0$ $\text{resistance} = 1500$ $\sin 5 = \frac{h}{d}$ $\therefore h = d \sin 5$	

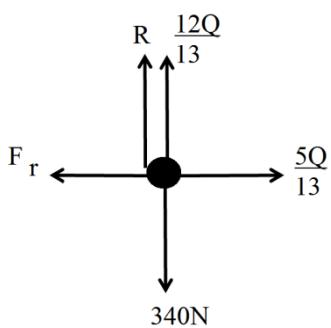
Solutions to January 2010

	<p>Energy methods means work done, mgh, and change in k.e.</p> <p>Total work done = change in k.e</p>	$gpe = mgh = mgd \sin 5$ wd by resistance $s = 1500d$ $\therefore mgd \sin 5 - 1500d = \frac{1}{2}m(v^2 - u^2)$ $\therefore d(1200 \times 9.8 \sin 5 - 1500) = 600(9^2 - 18^2)$ $\therefore d = \frac{145800}{475.048\dots} = 306.91\dots$ $\therefore d = 307$
iv.	<p>Using P, v, a and R</p>	$P = Dv$ $F = ma \Rightarrow D - R = ma$ $\therefore D = R + 1200a$ $\therefore P = (R + 1200a)v$ If P and R are constant then av must be constant If $a=0$ then P and R constant is true If $a \neq 0$ then as v is not constant a cannot be constant
3i.		If on the point of tipping over corner C due to P acting at A downwards, then Moments about C $P \times 0.125 = 340 \times 0.5$ $\therefore P = 1360N$
		If on the point of tipping over corner E due to P acting at A upwards, then Moments about E $P \times 2.125 = 340 \times 1.5$ $\therefore P = 240N$

Solutions to January 2010

ii.

Resolve Q into horizontal and vertical component


Moments about E clockwise for components of Q only

$$= Q \sin \theta \times 2.125 + Q \cos \theta \times 0.9$$

$$= \frac{12}{13}Q \times 2.125 + \frac{5}{13}Q \times 0.9$$

$$= \frac{30}{13}Q$$

iii.

If on the point of tipping with force Q then
Moments about E for Q and weight

$$\frac{30}{13}Q = 340 \times 1.5$$

$$\therefore Q = 221N$$

Resolving horizontally

$$F_r = \frac{5}{13}Q = 221 \times \frac{5}{13} = 85$$

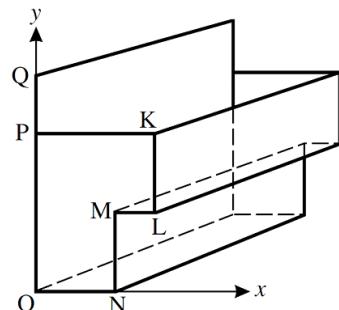
Resolving vertically

$$R + \frac{12}{13}Q = 340$$

$$\therefore R = 340 - \frac{12}{13}Q = 136$$

Using limiting friction $F_r \leq \mu R$

$$\mu \geq \frac{85}{136}$$


$$\therefore \mu \geq \frac{5}{8}$$

Solutions to January 2010

4i.		<table border="1"> <thead> <tr> <th>Area</th><th>Mass</th><th>Cofm x</th><th>Cofm y</th></tr> </thead> <tbody> <tr> <td>PONJ</td><td>3200</td><td>20</td><td>40</td></tr> <tr> <td>JMLK</td><td>800</td><td>50</td><td>60</td></tr> <tr> <td>total</td><td>4000</td><td></td><td></td></tr> </tbody> </table> $4000 \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = 3200 \begin{pmatrix} 20 \\ 40 \end{pmatrix} + 800 \begin{pmatrix} 40 \\ 60 \end{pmatrix}$ $\therefore 4000 \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = \begin{pmatrix} 104000 \\ 176000 \end{pmatrix}$ $\therefore \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = \begin{pmatrix} 26 \\ 44 \end{pmatrix}$ $c.m. = (26, 44)$	Area	Mass	Cofm x	Cofm y	PONJ	3200	20	40	JMLK	800	50	60	total	4000														
Area	Mass	Cofm x	Cofm y																											
PONJ	3200	20	40																											
JMLK	800	50	60																											
total	4000																													
ii.		<table border="1"> <thead> <tr> <th>Area</th><th>Mass</th><th>Cofm x</th><th>Cofm y</th></tr> </thead> <tbody> <tr> <td>OQ</td><td>110</td><td>0</td><td>55</td></tr> <tr> <td>ON</td><td>40</td><td>20</td><td>0</td></tr> <tr> <td>NM</td><td>40</td><td>40</td><td>20</td></tr> <tr> <td>ML</td><td>20</td><td>50</td><td>40</td></tr> <tr> <td>LK</td><td>40</td><td>60</td><td>60</td></tr> <tr> <td></td><td>250</td><td></td><td></td></tr> </tbody> </table>	Area	Mass	Cofm x	Cofm y	OQ	110	0	55	ON	40	20	0	NM	40	40	20	ML	20	50	40	LK	40	60	60		250		
Area	Mass	Cofm x	Cofm y																											
OQ	110	0	55																											
ON	40	20	0																											
NM	40	40	20																											
ML	20	50	40																											
LK	40	60	60																											
	250																													
iii.		<p>The centre of mass will hang directly beneath point Q</p> $\tan \theta = \frac{23.2}{69.8}$ $\theta = 18.4^\circ$																												

Solutions to January 2010

iv.

The ends have the same centre of mass as the coordinates calculated in i.

The sides have the same centre of mass as the coordinates calculated in ii.

Amalgamating this information,

Part	Mass	C _{mx}	C _{my}	C _{mz}
End1	1.5	26	44	0
End2	1.5	26	44	L
sides	7	23.2	40.2	L/2
Total	10			

Ignoring the z coordinates

$$10 \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = 1.5 \begin{pmatrix} 26 \\ 44 \end{pmatrix} + 1.5 \begin{pmatrix} 26 \\ 44 \end{pmatrix} + 7 \begin{pmatrix} 23.2 \\ 40.2 \end{pmatrix}$$

$$\therefore 10 \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = \begin{pmatrix} 240.4 \\ 413.4 \end{pmatrix}$$

$$\therefore \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = \begin{pmatrix} 24.04 \\ 41.34 \end{pmatrix}$$

$$c.m. = (24.0, 41.3)$$