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Solutions to January 2010 

K Wright – Please note – there may be errors, look out and check –ve signs especially! 
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This is the reverse of two particles 

coalescing. 

Using Conservation of momentum 
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Direction is opposite to P’s original motion 

ii. 

 

Coefficient of restitution e=0.1 
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Using Conservation of momentum 
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Solving both equations 

2.1
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 To find the distance horizontally between particles when they land, 

split the calculations into SUVAT in H and V. Note that for V, a=9.8 

and for H, a=0. Since both particles only have initial velocity in H, they 

land at the same t for V. 
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iii. Vertically for R & S 
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Horizontally for R 
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Horizontally for S 
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Distance apart  = 143.0
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(b) 

 
Before impact, velocities are 

u and v 

After impact let velocities be 

u1 and v1 

Coefficient of restitution is e 

Velocity perpendicular to 

plane is affected by 

coefficient of restitution, but 

velocity parallel to plane 

remains unchanged 
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Loss in mechanical energy  

= ke (before impact) – ke (after impact) 
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2i. Work done = Fd 

 

Work done against gravity i.e. gravitational potential energy = mgh 

Power 
time

donework

t

Fd

t

d
FFv

 
  

 

 

120

108.1

60

1200

6











t

vu

wdR

h

m

 

Total work done overcomes gravity and 

resistances 
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Power=20.9 KW 

 You could do this using conservation of energy 

wd by driving force – mgh – wd by resistances = change in k.e. 
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ii. 
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There is no acceleration when at steady speed so 

the driving force D equals the resistive forces R 
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Where F is the overall forward (i.e. in this case 

driving) force. 

So the resistive force is also 750N. 

 

Over 200 metres, the work done against resistance 

150000200750  Fd  Joules 
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Energy methods 

means work done, 

mgh, and change in 

k.e. 

 

Total work done 

=change in k.e 
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iv. Using P, v, a and R 
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If P and R are constant then av must be constant 

If a=0 then P and R constant is true 

If a≠0 then as v is not constant a cannot be 

constant 
 

3i. 

 

If on the point of tipping 

over corner C due to P 

acting at A downwards, 

then 
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If on the point of tipping 

over corner E due to P 

acting at A upwards, then 
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ii. 

 
Resolve Q into horizontal and vertical component  

Moments about E clockwise for components of Q only 
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iii. 

 

If on the point of tipping with force Q then  

Moments about E for Q and weight 
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Resolving horizontally 
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Using limiting friction RFr   
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4i. 

 

Area Mass Cofm x Cofm y 

PONJ 3200 20 40 

JMLK 800 50 60 

total 4000   

)44,26(..

44

26

176000

104000
4000

60

40
800

40

20
32004000




































































mc

y

x

y

x

y

x

 

ii. 

 

Area Mass Cofm x Cofm y 

OQ 110 0 55 

ON 40 20 0 

NM 40 40 20 

ML 20 50 40 

LK 40 60 60 
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iii. 

 

The centre of mass will hang directly 

beneath point Q 
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iv. 

 

The ends have the same centre of mass as the 

coordinates calculated in i. 

The sides have the same centre of mass as the 

coordinates calculated in ii. 

Amalgamating this information, 

Part Mass Cmx Cmy Cmz 

End1 1.5 26 44 0 

End2 1.5 26 44 L 

sides 7 23.2 40.2 L/2 

Total 10    

Ignoring the z coordinates 
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