Differential Equations: Revision

e I—
MEI DE 4758



A Wee Teecher Production
K Wright ©2013



Content

Separation of Variable

Integrating Factor Method

General & Particular Solutions

Homogenous Equations

Auxiliary Equations & Complementary Functions
Non-homogenous Equations & Particular Integrals
Simple Harmonic Motion

Damping and Critical Damping Constant

Systems of Differential Equations & Equilibrium Points
Euler’s Method



separation of variables

Separation of Variables

A differential equation can be separated by its variables
if it is of the form (PRODUCT)

% f(x)g(y)
X

J

= [ f(x)d
g(ny(X)X
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separation of variables

Example of separating variables

(C::y = Xy2 Separate variables on either side of =
X
1 .
_[—zdy = | xdx Integrate each side with respect to its
312 variable
[ y~“dy = [ xdx
1 1
—yt=Zx%+c
1 % Apply constants of integration to the
——==x’+c right hand side only
y 2
2
- i _A T 2 Rearrange the final equation to make
y 2 y the subject since the DE was
Ly =— 2 given as y differentiated with
x% 1 B respect to X
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separation of variables

, 5
Newton’s Law of Cooling (use of modulus)
A drink sits in a room dT
which has an ambient E = —5(T —20)
temperature of 20°C.
Its rate of j dT — _5_[ dt
temperature change is (T —20)
modelled by InT —20/=-5t+c
(;Ij_-.lt- — _5(T _ 20) ‘T _ 20‘ _ e—5t+C _ e—5teC _ Ae—5t
Find the solutions to ‘T _ 20‘ — Ae ™t
the differential
equation when
conditions are: I whent =0, T =80 I whent =0,T=0
. T=80 when t=0 T-20>0, useT-20 [T-20<0, use20-T
ii. T=0 when t=0
60 = Ae’ = A 20=Ae’ = A
- T=20+60e"" - T=20-20e""
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separation of variables

Newton’s Law of cooling example graphs

The drink cools down The drink warms up from
from 80° to 20° _ 0°to 20°

This is WRONG sincet>0
It should start here

T =20+60e™" T = 20— 20e %

Mrs K Wright



Integrating factor

Integrating Factor Method

For DEs written as

3V+P(x>y Q(%)

P and Q are functions of x
only (any degree)

ﬂ:xz—xy

dx

.'.ﬂthy:x2 cf :d_y+ P(x)y =Q(x)
dx dx

SO
P(x) =X

Q(X) =x"
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Integrating factor

Integrating Factor Method

If the equation looks like
d
o Py =Q(4

d
We want it in the form &[R(X) y]=1(X)
Where R is a function in terms of X
And f(X) = R(X)Q(x)

The LHS of the equation will be a perfect derivative so
there is only the RHS to integrate

. R= ejP(x)dx

R is the integrating factor wher

Mrs K Wright



-
(o] . . . 10
= Example using integrating factor R
(1t
(T
c dy 2 4 d
= 4 + Y _ > Cf:—y + P(X)y =Q(X) + Rearrange into linear form
® dx X X dx .
10.0 5 if necessary
@ Pd IS PY Inx? _ 2
'E R= ej "= e X =e" " =e"" =X * Find the integrating factor R
dy 2y 4 * Multiply BOTH SIDES
X* dx + X ~ =x° ? through the equation by R
’ * The left hand side is now a
d_(xzy) _4 perfect derivative
X

* The right hand side is a
function of x and can be
integrated

L X2y =[ddx=4x+c

4 * Rearrange to give y
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Integrating factor

Example using Integrating Factor

dy

COSX—= — (SiNX)y = X°
dx |
I 2 _ ﬂd
— ﬂ_ w y = X R=—¢ I(;os)()(:emCOSX
dx \cosx COS X
d x 2
—(ycosx) = x COS X
dx COS X
3
s ycosx=[x°dx="+c
3
3
X C _
y= + (General Solution)
COSX COSX

= COS X

Mrs K Wright
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General & Particular Solutions

"))
c
2
5 dy 2
= 2
o X“—=—+Xxy=— when =1 x=2
" dx y X y
© d 2 - ox
S Y — R=g x =g =x
R dx x2 x°
=
= d 2
o3 —(Xy) =—5xX
“© dx x3
T xy:jidx:—g+c
T X° X
O 2 C :
.. y=——+— (General Solution)
X< X
2 C
y=1 x=2 = 1l=——+—- = ..C=3
3 2
Sy = —% + 3 This is the particular solution
X< X

Mrs K Wright
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15t order linear

2nd order linear

Homogenous equations

Homogeneous Equations |[...=0]

dy
5—H 0
o)
d2
72/4‘4}/:0
ﬂ— ﬂ+6y—0
dx>  dx

Mrs K Wright
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Auxiliary equations: single root

14

Auxiliary Equations: single root

For a linear 1%t order equation of the type

5 dy
+y=0
dx Y=
Assume y=Ae™ = y'=Ate™

Substitute into the DE

5ALe™ + Ae™
Ae™ (51 +1) =0

Since e 20,

=0

The Auxiliary Equation is

:>/1:—E
5

The Complementary Function is

oA+1=0

Compare withsolving by :

y = Ae 5
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(7))

g Auxiliary Equations: 2 real roots
E‘} For a linear 2"? order equation of the type
(o]

“ d? d

2 Y 5 . 6y=0

= dx* dX

g use

o

= y = Ae™* + Be*?*

(G

E Auxiliary equation 12 -51+6=0
< o 1=21=3

Complementary function y = Ap2* 4 Bad

Mrs K Wright
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For a linear 29 order equation of the type

d°y
W‘l-zl-y — O
use
y = Ae™* + Be™?*
Auxiliary equation A +4=0

= A=12]
Complementary function y = Asin 2x + B cos 2x

Auxiliary equations: pure imaginary roots

Mrs K Wright

Auxiliary Equations: pure imaginary roots
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For a linear 29 order equation of the type

2
d—¥+2ﬂ+5y:0
dx dx
.- A +24+5=0
.. .
uxiliary equation s A=—142]

Auxiliary equations: complex roots

Complementary function y = e—lx(Aerx 4 Be—ZjX)

y=¢e " (Acos2Xx+ Bsin 2x)

Auxiliary Equations: general complex roots

Mrs K Wright
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Auxiliary equation: repeated roots

For a linear 29 order equation of the type

d*y _,dy
——4—=+4y=0
dx’ dx Y=

P —4A+4=0
=(1-2)"=0

Auxiliary equation

Complementary function

y = Ae™ + Bxe™

Auxiliary equations: repeated roots

y = Ae”* + Bxe™

Mrs K Wright
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= . 19
2 Complementary Functions

B -

§ Roots for Aux Equation Complementary Function

>

S Al +al+b=0

=

@

GE) A X A, X

§ A=azx)p y =e? (Asin X + Bcos pX)
q; A=m (twice) y = Ae™ + Bxe™

v

@

s

=

Mrs K Wright



Non-homogeneous Equations [...=f(x)]

Compare the solutions for the following

Wy 2y =
ax
EX+2y:3x—1
ax

The auxiliary equation for the homogenous DE is the same
in both cases and therefore both equations will have the
same Complementary Function, only the integrated
function on the RHS of the DE will be different

We choose a function similar to the RHS (with undefined
constants) which we substitute into the DE to find the
Particular Integral part of the general solution

Non-homogeneous equations

Mrs K Wright
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Particular integrals

Particular Integral for e3>

Let dy

+ 2 e
dx Y=

Auxiliary Equation

LHS: A+2=0
SA==2
Complementary Function
y = Ae—2x

General Solution =CF + PI

y = Ae 2 1 1

5

You have to find the CF first, as the PI
must not already be part of the

solution — here we try a multiple of e’

Particular Integral

RHS: y=ce*
- e
dx

Substitute into the DE
3ce™ +2ce™* =g

LC==
5

Mrs K Wright
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)

g Particular Integra

.'FEJ Let dy

E a;+2y:3x—1

=

-fé Auxiliary Equation

a LHS: 1+2=0
SA=-2
Complement ary Function
y = Ag~

General

Solution CF & Pl

—2x+§x_§

= Ae
y 2 4

22

for 3x-1
The Pl will be a linear function in X
Particular Integral
RHS : y=ax+Db
W,
dx
a+2(ax+b)=3x-1
—2a=3 =—=a= §
2
5
—a+2b=-1 :b:—z

Mrs K Wright



Summary of Particular integrals

Particular Integral Types

Function f(x) Particular Integral Type
constant K

linear ax +b

quadratic ax’® +bx + ¢
sinor cos asin wx + bcoswx
exponential ce PX

if the trial functiongives=0  yapx
thenuse aproduct with X ox2e P
if aproduct of X already exists,

thentry one with X2

Mrs K Wright
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cannot take the form

y+2y=0

LHS : AuxEquation
A+2=0

A=-2

CF: y=Ae™ =A™

Extension to particular integrals

The Complementary Function
already contains e_2t so trying
a Particular Integral of the same
type gives 0 on substitution

GS: y=Ae ™ +te™

24

Pl does not work [substitution=0]

Explain why the particular integral for ﬂ +2y = a2t

y=ae?
y+2y=e4
RHS : ParticularIntegral
Tryy=ae * = y=-2ae™ "
s —2ae” % + 2387 =74
—0=ae %
Tryy=ate %' = y=—2ate™*' + g™~
s —2ate™®' +ae™% +2ae " =ate™*
=a=1
Pl: y=ate ' =te™*

Mrs K Wright



SHM

Simple Harmonic Motion

25

Oscillating systems without damping: vertical spring

At rest;:
T =ke
1‘ T =mg
b e="9
1 K
T €
/{\
Mg

In motion: F=ma
T =k(e+x) =mg + kx

mg-—T —ma—md—zx
dt”
2
m—X:mg—ke—kx
dt”

d°x

2
d ;(+ K X=0
dt m

lo+e

\
g

Mrs K Wright



SHM

Simple Harmonic Motion

Oscillating systems without damping: horizontal spring

At rest:

T =kx

S

H‘um‘c'c‘:—z;

RPN
© 0.1‘53

X s dasplocements

intkvol condionS ek rest

'&‘D )1'-"0:1 N V=0

In motion: F=ma

2
_T:md_;(
dt
2
—kx:md—;(
dt
ax__k
dt? m
2
d ;(+ K X=0
dt m

Mrs K Wright



SHM

Simple Harmonic Motion

Oscillating systems without damping: pendulum
In motion: F=ma (transverse)

. d<o

—mqgsin @ = ml—-

: dt?
8 —>0snhg—0
dZg g
dt? |

2

d—f+96’:0
dt I

buk suien &
Velocity and acceleration are dependent on length

Mrs K Wright
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SHM

SHM — General Case

For the general case without damping

2
M:—cozx where a)zz—k,or a)zz—g

dt? m I
AuxEquation: A° + @* =0= A = +j

"X =AsIinwt + Bcoswt

Let Rsin(wt + &) =X

= Rsinwtcose + Rcoswtsin g = Asin wt + B cos wt

S R= \/A2 + B? =amplitude

Rcose = A, Rsing = B:tang:%
27

.. & .
Phase=¢ translationis— Period=— Frequency =

@ @

@
T

28



damping

SHM with damping

Damping introduces a way to reduce oscillations

oSN

At rest: tension—>
Damping force—>
N2LM “F=ma”

TS ——>RKR
T =kx
R = —r%
dt
R-T =ma
dx d?x
—r——kx= —
dt dt
d’x rdx Kk
>+ + —X=
dt mdt m

===

Mrs K Wright
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30
General Damped Equations

damping

Consider the discriminant of the auxiliary equation for

2

d—2y+ad—y+a)2y:0 where o= and w? =X
dt dt m m
Aux Eqn: P +al+w° =0

Discrimina nt : «? — 4w?

a’ —4w° > 0= overdamping

Amplitude

a’ —4w° < 0= underdamping

Urder Dramped

a’ —4w° =0 = critical damping

Time

Mrs K Wright



Critical damping

Critically Damped Equations

An object of mass 0.25kg has undamped motion

. 2
described by %Jrafy:o (k =20, and »° =80)

What is the value of the damping constant if the system
is to be critically damped?

2
u+aﬂ+w2y:0 Wherea:%(r:damping) and w® =80

dt®  dt

Aux Egn: 2% +al+80=0

Discriminant: a? —4x80=0= critical damping
na®=320=r%=320x0.25"

S r=+20

Mrs K Wright
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Critical damping

Critically Damped Equations

What happens to the same system if the object has its
mass i) Increased to 0.3kg ii) Decreased to 0.2kg
given that all other constants remain unchanged

2
d—y+aﬂ+a)2y:0 wherea:L(r:damping) and ®* :@
m m

dt? dt
20

AuxEqgn: /12+a/1+a)2=0:>/12+ A+—=0
m m

20
m

2
r
Discriminant: a’ — 4@? =(j 4(

m
m=0.3= 20 _ S% < 0= underdamped

0.09 O.
m=02= 20 _ 80 > 0 = overdamped
0.04 0.2

j 0 = critical damping

Mrs K Wright
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Summary SHM solutions

General SHM solutions

(Remember modelling assumptions for SHM)

2
d—2X+a)2X:O
dt
X = Asin wt + Bcoswt
a=0 :
X =asin(aot + &)
2
ﬂ+05%+a)2X:O
dt? t
o> 2w x = Ae™t + Be?!
a,
a=2w X=(A+ Bt)e 2
a,
— 2 gj
o< X ale sin(pt + &)
p=§\/4a)2—a2

no damping

over damped

critically damped

under damped

Mrs K Wright
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34

Systems of DEs

Solve for the differential equations: (1)% =aX+hy+c

Systems of DE

Normally we eliminate y and y
rearrange: (1) (3) byy=X—-ax—-¢

substitute : (3) & (4) = (2)

1
rearrange

éx-é(al —b2)>'<+[all;i—a2jx:c2

d
(Z)d—¥:a2x+b2y+cz

The independent variable is
the one the others are
differentiated with respect to

Now we can solve using
Auxiliary equations and
Particular Integral methods

Mrs K Wright



Systems of DE

35

System of DEs Example — General Solution

Solve for (4 %:—x+y—1
dt

dy
2) —=-X-y+3
(2) it y

* Firstly, eliminatey

e Solve for x

 Then go back and solve fory
(1) x=—-x+y-1
= y=X+X+1 (3)
= y=X+X (4)

(3) & (4)=(2)
X+ X=—X—(X+x+1)+3
X+2X+2X=2

X+2X+2Xx=2
AE: A% +21+2=0
(A +1)* +1=0

= A=-1%]

CF:x=e'(Asint + Bcost)
Pl:x=Kk
2k=2=k=1

GS:
x =e ' (Asint + Bcost) +1

Mrs K Wright



Systems of DE

System of DEs Example — General Solution

dx dy
1 —=—-X4+VvV-1 (2 — =—X—-Vy+3
Solve for (1) it y (2) it y

y=X+Xx+1 (3)

x=e '(Asint + Bcost) +1

x =—e '(Asint + Bcost) + e ' (Acost — Bsint)
S Xx=1-x+e"(Acost — Bsint)

L y=[1—x+e'(Acost — Bsint)]+ x +1

.. y=e""(Acost — Bsint) + 2

Mrs K Wright
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Systems of DE

System of DEs Example — Particular Solution
L SN ay
Solve for (1) i 1 (2 i y+3

And when t=0, x=0, y=3
 Make the substitution for x at the GS stage

x =e ' (Asint + Bcost) +1
t=0,x=0
0=B+1=B=-1
y =e '(Acost — Bsint) + 2
t=0,y=3
3=A+2=A=1

x=e ' (sint —cost) +1
y =e ' (cost +sint) + 2

Mrs K Wright
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Systems of DE

38
System of DEs Example — Limits & Bounds

Find the limit of x and y when t is very large and
positive

If 2=k when t is very large, find k

X = e_t (Sin’[ — COSt) +1 If a solution looks like
— —t 3t
t>0oe ' >50,x—>1 X=Ae +Be” +1

and it is said to be bounded for
large positive values of t, then

y = e_t (COSt +sIn t) 4+ 2 the coefficient of @3t must be
_t zero, B=0
t—>ow,e >0, y — 2 Similarly if it is said to be

bounded for large negative
values of t, then g~t must be
zero, so A=0

X—>g:>k=2

X

Mrs K Wright



Equilibrium Points

A solution curve plots the motion of the dependent
variables from the initial point to some end point

There is a direction associated with solution curves, so
they should have arrows on them

Solution curves can be drawn from tangent fields and a
particular one highlighted from a family of curves

Systems of DE: equilibrium points

Mrs K Wright
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Systems of DE: equilibrium points

For
dx

(1) —=2x+4y

dt
dy

2) —Z =X-—-

(2) m y

cdy  x-y

Cdx 2x+4y
Initially

t=0
X=2

Equilibrium Points Case 1

Equilibrium point is (0,0)

Mrs K Wright
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For

1) dx

dt
dy

2) —Z==3Xx

(2) m

Jdy X
”&__§
Initially

0

X=3

_3y

Systems of DE: equilibrium points
I

Equilibrium Points Case 2

4T

-4 4

Equilibrium point is (0,0)

Mrs K Wright
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Systems of DE: equilibrium points

Equilibrium Points Case 3

For i

1) —=—-x+y-1

(1) " y
dy

2) —=-X-Yy+3

(2) o y

cdy —-x-y+3

Tdx —x+y-1

Initially

t=0

X=0

y=3

%:O:yzx—l

dt

d—y=0:> y=3-X
dt

==

Equilibrium point is (1,2)

Mrs K Wright
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43
Euler’s Method

We use increments of x (constant step size) to develop

Euler’s Method

new increments of y 1 Error
X, = X, +nh T
Yo =Yn Tt ht (Xn’ yn) Ay3
... Z(Xn, yn) — (XO + nh1 yn + hf (Xn’ yn))
Error
Ay,
Error h l'
A(X0,Yo) eyl
h

Mrs K Wright



Euler’s Method

Example using Euler’ Method

Estimate the value at x=1 for the differential equation

d
ay _ X2 +y?
dx
which has passes through the point (0,0.5), using a step

length of 0.25

Mrs K Wright
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Euler’s Method

Using Columns and Rigour

To get to X=1 from X=0, with step size 0.25

1 h= 0.25

2 |dy/dx=  x*+y?

3 initx= 0 inity=
4 n X V

5 0 0.0000

6 1 0.2500

7 2 0.5000

8 3 0.7500

9 4 1.0000

0.5000000
0.5625000
0.6572266
0.8277133
1.1396156

dy/dy

0.5

0.2500
0.3789
0.6819
1.2476
2.2987

h(dy/dx)

The estimate for y(1) will be 1.1396 (4dp)

0.0625
0.0947
0.1705
0.3119
0.5747

45

new y=y+h(dy/dx)
0.5625
0.6572
0.8277
1.1396
1.7143

Mrs K Wright



Euler’s Method

How do we know when to stop?

.6 T estimate of y(1)

h Estimate for y(1)
0.2 1.1964
"_T.s T

0.125 1.3020 <

0.1 1.3447 8
0.0625 1.4185 ‘g |

0.05 1.4463 g
0.025 1.5081

0.01 1.5498 ) h

0 0.05 0.1 0.15 0.2

Plotting the information from the table we can see that
by drawing a straight line through the two points
with the smallest step size, the other points are all
approaching this line

Mrs K Wright
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Euler’s Method

Error estimate

h Estimate for y(1)
0.025 1.5081
0.01 1.5498
0.001 1.5770
0.0001 1.5798

As the step size decreases, the estimates for y(1)
appear to lie very close to a straight line

To get a solution correct to 2 decimal places using the
spreadsheet, you need to find a step such that
making the step smaller does not alter the first two
decimal places.

We need somewhere between 1000 and 10,000 steps.
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Euler’s Method

Estimating the exact value for y(1)

For small values of h, the error is approximately a linear
function. Using y=mh+c we need to find m and c

Using h=0.025, y(1)=1.5080586, let y(1)=0.025a+b
and h=0.01, y(1) =1.5498494 and y(1)=0.01la+b

1.5080586=0.025a +b (1)
1.5498494=0.01la+b  (2)
M-(2)  .-0.0417908=0.015a

-.a=-2.786053 & b=1.521988867

= y(1)=1.521988867 — 2.786053h
The exact value willbewhen h=0
- y(1) =1.521988867

Mrs K Wright
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