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Separation of Variables 

A differential equation can be separated by its variables 
if it is of the form 
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Example of separating variables 
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Separate variables on either side of = 

 

Integrate each side with respect to its 
variable 

 

 

Apply constants of integration to the 
right hand side only 

 

Rearrange the final equation to make 
y the subject since the DE was 
given as y differentiated with 
respect to x 
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Newton’s Law of Cooling (use of modulus) 

A drink sits in a room 
which has an ambient 
temperature of 20°C.  

Its rate of 
temperature change is 
modelled by 

 

 

Find the solutions to 
the differential 
equation when 
conditions are: 

i. T=80 when t=0 

ii. T=0 when t=0 
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Newton’s Law of cooling example graphs 

The drink cools down 
from 80° to 20° 

The drink warms up from 
0° to 20° 
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This is WRONG since t > 0 
It should start here 



Integrating Factor Method 

For DEs written as 

 

 

P and Q are functions of x 
only (any degree) 
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Integrating Factor Method 

If the equation looks like 

 

 

We want it in the form 

Where R is a function in terms of x 

And  

The LHS of the equation will be a perfect derivative so 
there is only the RHS to integrate 

 

R is the integrating factor where 
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Example using integrating factor R 
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• Rearrange into linear form 
if necessary 
 

• Find the integrating factor R 
 

• Multiply 
through the equation by R 
 

• The left hand side is now a 
perfect derivative 
 

• The right hand side is a 
function of x and can be 
integrated 
 

• Rearrange to give y 
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Example using Integrating Factor 
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General & Particular Solutions 

Solution) (General     
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Homogeneous Equations [...=0] 

1st order linear 

 

2nd order linear 
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Auxiliary Equations: single root 

For a linear 1st order equation of the type 
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Auxiliary Equations: 2 real roots 

For a linear 2nd  order equation of the type 
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Auxiliary Equations: pure imaginary roots 

For a linear 2nd  order equation of the type 
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Auxiliary Equations: general complex roots 

For a linear 2nd  order equation of the type 
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Auxiliary equation: repeated roots 

For a linear 2nd  order equation of the type 
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Complementary Functions 

Roots for Aux Equation       Complementary Function 

(twice)   
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Non-homogeneous Equations [...=f(x)] 

Compare the solutions for the following 

 

 

 

 

The auxiliary equation for the homogenous DE is the same 
in both cases and therefore both equations will have the 
same Complementary Function, only the integrated 
function on the RHS of the DE will be different 

We choose a function similar to the RHS (with undefined 
constants) which we substitute into the  DE to find the 
Particular Integral part of the general solution 
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Particular Integral for e3x 

Let 
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You have to find the CF first, as the PI 
must not already be part of the 
solution –  here we try a multiple of  xe3



Particular Integral for 3x-1 

Let 
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Particular Integral Types 

Function f(x)                         Particular Integral Type 
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PI does not work [substitution=0] 

Explain why the particular integral for 

cannot take the form 
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The Complementary Function 
already contains             so trying 
a  Particular Integral of the same  
type gives 0 on substitution 



Simple Harmonic Motion 

Oscillating systems without damping: vertical spring 

                 At rest:                   In motion: F=ma 
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Simple Harmonic Motion 

Oscillating systems without damping: horizontal spring 

                 At rest:                   In motion: F=ma 
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Simple Harmonic Motion 

Oscillating systems without damping: pendulum 

                                            In motion: F=ma (transverse) 

 

 

 

 

 

 

 

 
Velocity and acceleration are dependent on length 
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SHM – General Case 

For the general case without damping 
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SHM with damping 

Damping introduces a way to reduce oscillations 

 

 

At rest: tension→ 

Damping force→ 

N2LM “F=ma” 
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General Damped Equations 

Consider the discriminant of the auxiliary equation for 
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Critically Damped Equations 

An object of mass 0.25kg has undamped motion 
described by 

 

What is the value of the damping constant if the system 
is to be critically damped? 
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Critically Damped Equations 

What happens to the same system if the object has its 
mass i) Increased to 0.3kg ii) Decreased to 0.2kg 
given that all other constants remain unchanged 
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General SHM solutions 

(Remember modelling assumptions for SHM)  
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Systems of DEs 

Solve for the differential equations: 
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System of DEs Example – General Solution 

Solve for 

 

 

• Firstly, eliminate y 

• Solve for x 

• Then go back and solve for y 

3(

1(





yx
dt

dy

yx
dt

dx

     2)

         1)

 
222

31

)2()4(&)3(

)4(

)3(1

1(













xxx

xxxxx

xxy

xxy

yxx









        
     
       1)

 

1)cossin(

:

122

:

)cossin(:

1

011

022:

222

2

2





















tBtAex

GS

kk

kxPI

tBtAexCF

j

AE

xxx

t

t








Mrs K Wright 



System of DEs Example – General Solution 

Solve for 3     2)(     1     1)(  yx
dt
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System of DEs Example – Particular Solution  

Solve for 

And when t=0, x=0, y=3 

• Make the substitution for x at the GS stage 
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System of DEs Example – Limits & Bounds 

Find the limit of x and y when t is very large and 
positive 

If 𝑦
𝑥
=𝑘 when t is very large, find k 
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If a solution looks like 
 
 
and it is said to be bounded for 
large positive values of t, then 
the coefficient of       must be 
zero, B=0 
Similarly if it is said to be 
bounded for large negative 
values of t, then          must be 
zero, so A=0 
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Equilibrium Points 

A solution curve plots the motion of the dependent 
variables from the initial point to some end point 

There is a direction associated with solution curves, so 
they should have arrows on them 

Solution curves can be drawn from tangent fields and a 
particular one highlighted from a family of curves 
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Equilibrium Points Case 1 
For 
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Equilibrium Points Case 2 

For 
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Equilibrium Points Case 3 

For 
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Euler’s Method 

We use increments of x (constant step size) to develop 
new increments of y 

A(x0,y0) 
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Example using Euler’ Method 

Estimate the value at x=1 for the differential equation 

 

 

which has passes through the point (0,0.5), using a step 
length of 0.25 

22 yx
dx

dy

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Using Columns and Rigour 

To get to x=1 from x=0, with step size  0.25 

 

 

 

 

 

 

The estimate for y(1) will be 1.1396 (4dp) 
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How do we know when to stop? 

h Estimate for y(1) 

0.2 1.1964 

0.125 1.3020 

0.1 1.3447 

0.0625 1.4185 

0.05 1.4463 

0.025 1.5081 

0.01 1.5498 

Plotting the information from the table we can see that 
by drawing a straight line through the two points 
with the smallest step size, the other points are all 
approaching this line 
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Error estimate 

As the step size decreases, the estimates for y(1) 
appear to lie very close to a straight line 

To get a solution correct to 2 decimal places using the 
spreadsheet, you need to find a step such that 
making the step smaller does not alter the first two 
decimal places.  

We need somewhere between 1000 and 10,000 steps. 

 

h Estimate for y(1) 

0.025 1.5081 

0.01 1.5498 

0.001 1.5770 

0.0001 1.5798 
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Estimating the exact value for y(1) 
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(2)         1.5498494
(1)       0.0251.5080586

For small values of h, the error is approximately a linear 
function. Using y=mh+c we need to find m and c 
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